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MotivationMotivation

• We like to:
– Compare different architectures.
– Compare different applications and implementations.
– Match applications and architectures effectively.

• For this we need:
– To characterize and quantify the dominant performance 

aspects of our codes.
– Relate these performance aspects to hardware features.

• To do this across different architectures such a 
characterization has to be hardware independent!
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ApproachApproach

• Develop a quantitative characterization of algorithms 
and codes focusing on performance aspects.

• Avoid using any specific hardware models or 
concepts for this characterization.

• Develop synthetic scalable performance probes and 
benchmarks testing these characteristics.

• Our focus is the performance influence of global data-
access.



Office of Science

U.S. Department of Energy

Aspects of Data AccessAspects of Data Access

• Temporal Locality
– Re-use of recently accessed data 

for regular and irregular data access patterns.
• Spatial Locality

– Access to contiguous memory locations.
– Regular stride 1 access.
– Large messages between processes.

• Parallel data access
– Multiple concurrent load/store operations.
– Concurrent access on localized data structures.
– Large messages between processes.
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ParametersParameters

Parameters to characterize data access pattern:
• Re-use number for temporal locality.

– Hard to define hardware independent. 
– Based on temporal locality function.

• Length of regular data access for spatial locality.
• Limiting length for message sizes for the concurrency 

of data access.
– In codes this is limited by data-dependencies, etc.
– Is particularly important in parallel context.
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Temporal LocalityTemporal Locality

How can we quantitatively describe data re-use?

Starting Point:
• Look at temporal distribution function:

– The probability with which I have used my next 
data item within the last t accesses.

– At every access I have a probability f(t) to hit a 
location I have visited within the last t cycles.



Office of Science

U.S. Department of Energy

Temporal LocalityTemporal Locality

Cumulative temporal Distribution
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ReRe--use Numberuse Number

Define a “re-use” number:
• M be the used memory in words.
• The code has a total of N data accesses.
• We look at all the accesses to a memory location X

and assign the values 0 or 1 to it depending if it is 
being accessed again within M data access steps.

• We call the average k of these values the re-use 
probability of memory location X.

M N

X
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ReRe--use Numberuse Number

• The average re-use for the whole code is the 
average k for window size M for all accessed 
memory locations.

• This implies that the probability at the temporal 
distance of t=M is:

P(M) = k
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Temporal Distribution FunctionTemporal Distribution Function

• We try to capture the ‘main’ re-use effect by using a 
generic function with only a few numeric parameters. 

• Approximate the temporal distribution function of 
codes by a simple generic function with 1 parameter. 

• For recursive algorithms the cumulative temporal 
distribution function should be self-similar and scale-
invariant. (A recursive algorithm is self-similar.)

?Power Function Distribution
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Power DistributionPower Distribution
• Characterized by one number.

– Slope in log-log related to the ‘Re-use’ number.
• Concept does not use hardware concepts such 

as ‘cache’
• Distribution function is problem size and scale 

invariant.
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Power DistributionPower Distribution

• All we need now is a synthetic pseudo-random 
algorithm to generate an address stream, which has a 
power distribution as temporal distribution function. 

• Many algorithms generate the same temporal 
distribution, so we have some choices.

• The details of the chosen algorithm could produce 
artifacts if not selected carefully.

• In particular the temporal distribution function is 
independent of the selected data mapping!
– Still (almost) any regularity possible!
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Spatial Locality = RegularitySpatial Locality = Regularity

• Typically expressed by a mapping of the data 
structure to the address space which permits 
– Stride 1 access.
– Storage of data structures in hardware related units such as 

cache lines.
– Easily quantified by the average access length.

Alternative concept:
• Affinity of data to processes which allows data access 

localization is also a (different) expression of spatial 
locality.
– We have not explored this one yet.
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BenchmarkBenchmark Probe Probe –– ConceptConcept

We develop a synthetic benchmark program:

• Use indexed (“irregular”) data access.

• With the same control parameters as our characterization. 

• Based on non-uniform random address generation.

– Power distribution of random numbers 

– Exponent ? [0,1]; uniform random ? =1

• Approximates power-function as TDF.
• This should provide a lower bound for performance.
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Memory Hierarchy TestMemory Hierarchy Test
R=1; no re-use (a=1)
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Sequential Probe Sequential Probe -- TDFTDF
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Test KernelsTest Kernels

As test codes are analyzing the following kernels:
– Radix (Integer Sort)
– N-Body (Interaction of N bodies in three dimensions)
?Also without computational part.

– NAS CG (Conjugate Gradient, sparse linear systems)
?Also random matrix access in isolation.

– Matrix Matrix Multiplication
– FFT (1-dimensional complex FFT - Splash suite based)
?Also consider transpose part separately.
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Radix Radix --TDFTDF
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nBodynBody --TDFTDF
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1D FFT 1D FFT --TDFTDF
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NAS CG NAS CG --TDFTDF
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Matrix Multiplication Matrix Multiplication --TDFTDF
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Kernel Kernel -- sequentialsequential
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Sequential Probe Sequential Probe -- Timings Timings 

0

50

100

150

200

250

300

350

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000 1,000,000,000

Size

Ti
m

e 
pe

r 
D

at
a 

A
cc

es
s 

[n
s]

CG

MM

Transpose

Nbody no-comp

FFT

Radix

Nbody



Office of Science

U.S. Department of Energy

Sequential CorrelationsSequential Correlations
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Parallel ConceptParallel Concept

• For shared memory the concept is the same.
• For distributed memory we also need to 

specify after how many iterations of the kernel 
data have to be exchanged between processes. 
This is defined by the Granularity.

• There are several alternative implementations 
possible, which affect parallel performance 
substantially.



Office of Science

U.S. Department of Energy

GranularityGranularity

• Limiting length for message sizes for the 
concurrency of data access.
– In codes this is limited by data-dependencies, etc.
– Is particularly important in parallel context.

• Tends to be:
– Very large from theoretical point of view but
– Further limited by available memory sizes
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Parallel Probe Parallel Probe -- ImplementationImplementation

We tested different communication strategies:
• Direct: Send a message every time you find an 

address on a remote process.
• Merge: Group remote accesses to minimize 

messages. 
– This requires 2 passes over address list.

• Merge and match: ‘Merge’ and eliminate 
multiple references to the same address.

• …
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Parallel Probe Parallel Probe -- TimingsTimings
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CG TimingsCG Timings
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Parallel CG Parallel CG -- CorrelationCorrelation

0.000

0.050

0.100

0.150

0.200

0.250

0 2 4 6 8 10 12 14 16 18

# Processors

R
at

io

C
B
A



Office of Science

U.S. Department of Energy

Parallel Radix Parallel Radix -- TimingTiming
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Parallel Parallel –– Probe Probe -- TimingTiming
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Parallel Radix Parallel Radix -- CorrelationCorrelation
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ConclusionConclusion

• Characterization of temporal locality by approximating 
the temporal distribution functions with power 
functions seems to work fine.
– In particular in the sequential case.

• For spatial locality several concepts need to be 
explored further.
– Especially for the parallel case.

• A lot of the difficulties are in choosing the right details 
of the implementation.


